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Abstract

Starting from the modified Ward-Takahashi identity for the on-shell radiative
πN scattering amplitude a generalization of the soft photon theorem approach
is obtained for an arbitrary energy of an emitted photon. The external particle
radiation part of the πN → γ′π′N ′ amplitude is analytically reduced to the double
∆ exchange amplitude with the intermediate ∆ → γ′∆′ vertex.

We have shown that the double ∆ exchange amplitudes with the intermediate
∆ radiation is connected by current conservation with the corresponding part of
the external particle radiation terms. Moreover, according to current conservation
the internal and external particle radiation terms with the ∆ − γ′∆′ vertex have a
opposite sign i.e. they must cancel each other. Therefore we have a screening of the
internal double ∆ exchange diagram with the ∆−γ′∆′ vertex by the external particle
radiation. This enables to obtain a model independent estimation of the dipole
magnetic moment of ∆+ and ∆++ resonances µ∆ through the anomalous magnetic
moment of the proton µp as µ∆+ = M∆

mp
µp and µ∆++ = 3

2µ∆+ in agreement with the
values obtained from the fit of the experimental cross section of the
π+p → γ′π+p reaction.

Considering pions and nucleons as bound systems of quarks in the conventional
quantum field theory, a generalized Ward-Takahashi identity for the on shell πN
radiation amplitude is derived. This identity presents a general scheme of the current
conservation which allows to obtain the model independent relations between the
external and internal particle radiation amplitudes. The resulting equations for the
external and internal particle radiation amplitudes of the πN bremstrahlung reaction
have the same form as in formulation without the quark degrees of freedom [15].
Therefore current conservation and the ∆ resonance pole position of the πN scatter-
ing amplitude determines analytically the dipole magnetic moment of the ∆ resonan-
ces µ∆ through the anomalous magnetic moment of the proton µp.

The present investigation of the πN radiation reaction based on the Ward-Takahashi
identity for the on shell amplitudes. It generates the following model-independent relations:

(i) An amplitude of an arbitrary a + b −→ γ′ + f1 + ... + fn (n = 1, 2, ...) reaction
fulfills the generalized current conservations

k′
µ < out; f1, ..., fn|J µ(0)|a, b; in >=[
Bf1...fn−ab + k′

µEµ
γ′f1...fn−ab

]
on mass shell f1, . . . fn; a, b

= 0,
(I)

where Eµ
γ′f1...fn−ab corresponds to the complete set of Feynman (or three-dimensional

time-ordered) diagrams with the photo-emission from each external particles and
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Bf1..fn−ab =
n∑

m=1(I1 �=m...In−1 �=m)

em < out; fI1...fIn−1 |Jm(0)|a, b; in >

−ea < out; f1...fn|Ja(0)|b; in > −eb < out; f1...fn|Jb(0)|a; in > (II)

stands for amplitudes of the a + b −→ f1 + ... + fn reaction without γ′ emission.
A special case of relation (I) is the external particle radiation terms.
Equation (I) and (II) are also valid for an arbitrary number of external photons.

For instance, these equations can be used as current conservation for the pion photo-
production reaction γA → π′A′, for Compton scattering γA → γ′A′ etc.

(ii) Current conservation (I) requires the existence of the internal particle radiation
amplitude Iµ

γ′f1..fn−ab which ensures the validity of this condition

k′
µIµ

γ′f1...fn−ab = Bf1...fn−ab, or k′
µEµ

γ′f1..fn−ab + k′
µIµ

γ′f1..fn−ab = 0. (III)

This means that Eµ
γ′f1..fn−ab and Iµ

γ′f1...fn−ab have a different sign and they must be
subtracted from each other. Thus we have a screening of the internal particle radiation
amplitudes by the external one-particle radiation terms.

(iii) For the soft emitted photons k′ → 0 our approach immediately reproduces the
low energy theorems for the bremsstrahlung reactions.

(iv) The external particle radiation part of the bremsstrahlung amplitude Eµ contains
the electromagnetic form factors of the external particles only in the tree approximation.
This follows from the equal-time commutators which are a result of charge conservation.
Thus we must modify the equal-time commutators between the Heisenberg operators of
the external particles in order to apply the full electromagnetic form factors of pions and
nucleons in the current conservation condition (I) or (III).

The above screening mechanism has been applied to the πN bremsstrahlung reaction
with the leading double ∆ exchange term. We have shown, that in the low energy
region, where the electric quadrupole and the magnetic octupole momenta of ∆ can be
neglected, the intermediate ∆ radiation radiation term is completely canceled against the
corresponding part of the external particle radiation amplitude. From this cancellation
follows the normalization condition for the Coulomb monopole part of the ∆−γ′∆′ vertex
which allows to extract the ∆+ and ∆++ dipole magnetic momenta µ∆+ = GM1(0) =
M∆

mN
µp and µ∆++ = 3

2
µ∆+ = 5.46e/2mp or µ∆++/µp ∼ 1.95. Our result for µ∆++, based on

the model independent current conservation condition, is in agreement with the prediction
of the naive SU(6) quark model for µ∆++ = 2µp = 5.58e/2mp [1, 2], with the nonrelativistic
potential model [9] µ∆++ = 4.6± 0.3. and with extraction of µ∆++ from the π+p → γπ+p
experimental cross section in the framework of the low energy photon approach µ∆++ =
3.6 ± 2.0 [4], µ∆++ = 5.6 ± 2.1 [5] and µ∆++ = 4.7 − 6.9 [7]. Our result is larger as the
predictions in the modified SU(6) models [10, 3] and in the soft-photon approximation
µ∆++ = 3.7 ∼ 4.9e/2mp [6]. On the other hand our result is smaller as the values obtained
in the framework of the effective meson-nucleon Lagrangian µ∆++ = 6.1 ± 0.5e/2mp [13],
in the effective quark model µ∆++ = 6.17e/2mp [14] and in the modified bag model
µ∆++ = 6.54 [11].

The summary of the numerical estimations of the magnetic moments of ∆+ and ∆++

resonances is given in table 1. In a number of approaches the magnetic moment of ∆ is
treated as an adjustable parameter in the radiative πN scattering which is determined
using the most sensitive configurations to the ∆ − γ∆ vertex in the slow photon regime.
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Table 1: Magnetic moments of ∆+ and ∆++ in units of the nuclear magneton µN = e/2mN . The
ref. in front of the index f indicates the theoretical model which is used to fit of the experimental
data and to extract the magnetic moment µ∆

Models This SU(6) Potential and Modified Soft photon Eff. πN Eff.
work K-matrix appr. Bag theorem Lagran. quark

µ∆+ 3.64 2.79 [1, 2] 2.79[14]
5.58 [1, 2] 6.9-9.7[8]f 3.6±2.0[4]f

µ∆++ 5.46 4.25[3] 4.6±0.3[9]f 6.54[11] 5.6±2.1[5]f 6.1±0.5[13]f 6.17[14]
4.41-4.89[10] 5.6-7.5[12]f 4.7-6.9[7]f

3.7-4.9[6]f

Corresponding results obtained from the experimental cross sections of the π+p → γπ+p
reaction are indicated in the table 1 with the index f . It must be emphasized, that only our
approach and naive SU(6) quark model gives an analytical form for µ∆+ and µ∆++. But
our result for µ∆+ is M∆/mp ∼ 1.31-times larger as µ∆+ = µp = 2.79e/2mp in refs. [1, 14].

This screening mechanism can be observed in the cross sections of the πN bremsstrah-
lung reaction or in the γp → γπop reaction by comparison of the cross sections in and
outside the ∆ resonance region. Due to the importance of the double ∆ exchange diagram
(Fig. 2B) one must have a different 1/k′ behavior of the bremsstrahlung amplitude in and
outside the ∆ resonance region.

Next we have extended our work [15] of the analytic extraction of the dipole magnetic
moments of the ∆ resonances on the base of the modified Ward-Takahashi identities for
the on shell πN bremsstrahlung amplitude. This extension is done in the framework of the
general field-theoretical approach [17, 18, 19, 16], where particles are constructed as the
bound (composite) states of quarks and gluons. The creation and annihilation operators
of the composite pions and nucleons enables to construct the pion-nucleon radiation
amplitude < out;p′

Np′
π|Jµ(0)|pπpN ; in > with on mass shell pions and nucleons in the

asymptotic ′′in′′ and ′′out′′ states and Jµ(0) current operator of photon. Afterwards the
Ward-Takahashi identity follows from the current conservation
k′

µ < out;p’Np′
π|Jµ(0)|pπpN ; in >= 0. Besides we have used the charge conservation

which determines the equal-time commutation rules for the photon current operator
and quark field operators. A model-independent connection between the external Eµ

and internal Iµ particle radiation terms follows from the corresponding Ward-Takahashi
identity which has the same form as in the formulation without quark-gluon degrees
of freedom. In particular, Eµ and Iµ have the opposite sign because they satisfy the
condition k′

µ < out;p′
Np′

π|Jµ(0)|pπpN ; in >= k′
µEµ + k′

µIµ = 0. Therefore after the same
transformations as in [15] one obtains Dµ(∆∆) = −Iµ(∆∆) Thus the internal particle
radiation part Iµ(∆∆) and the corresponding double ∆ exchange part of the external
particle radiation amplitude Eµ

2 cancel. In other words the same screening of the internal
particle radiation terms by the external particle radiation diagrams must be observed
in the bremstrahlung reactions in the formulations with and without quark degrees of
freedom. This screening mechanism allows us determine the dipole magnetic moments of
the ∆ resonances via the magnetic moments of the external nucleons in the same way as
it was done in our previous paper without quark degrees of freedom [15].

The general current conservation for the bremstrahlung reactions with and without
quarks were studied in the framework of the 3D time-ordered field theoretical approach
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which was developed in refs. [20, 21, 22, 23].
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